ENZYME-CATALYZED PEPTIDE SYNTHESIS IN BIPHASIC AQUEOUS-ORGANIC SYSTEMS **P.** Kuhl, A. Konnecke, G. Doring, H. **D3umer and** H.-D. Jakubke Sektion Biowissenschaften der Karl-Marx-Universitat, Bereich Biochemie DDR-701 Leipzig, G 0 R

SUMMARY: A preparative protease-catalyzed peptide synthesis in biphasic aqueous-organic systems is described. This approach using both free as well as immobilized proteases as catalysts provides high yields and includes the possibility to re-utilize the enzymes.

In 1937 Bergmann and Fraenkel-Conrat $^{\rm 1}$ were able to show that papain can be used for catalyzing amide bond formation. Since that time, numerous papers have appeared concerning the reversal of enzymic peptide hydrolysis². Especially, during the last four years there has been a revival of proteasecatalyzed peptide synthesis obviously caused by the interest in an alternative to chemical methods3-5. **To** guarantee a sufficient solubility of the substrates, **most enzymic syntheses have been carried out in buffered homogeneous aqueousorganic mixtures, Furthermore, Homandberg et al.** 6 **have shown** that the addition of organic cosolvents shifts peptide bond equilibria toward synthesis. There is no doubt that the use of solvents which are miscible with water will significantly **decrease the catalytic activity of the proteases. Caused by these** arguments and reports from other fields of enzyme-catalyzed syntheses 7'8 we have studied the influence of water-immiscible organic solvents on the protease-catalyzed peptide synthesis. **Due to the minimum contact with the organic solvent the protease will not be damaged by the nonaqueous solvent. On the other hand, the solvent should promote the phase-transfer of the substrates to the enzyme.**

Enzymic syntheses were carried out at room temperature in a buffer-organic heterogeneous system using Leu-NH₂ in all cases as amino component and different **N-protected peptide derivatives as carboxyl components. The precipitate formed during Q(-chymotrypsin-catalyzed coupling (Table 1) was**

893

washed on a sintared glass **filter** with water, 1 M HCl, water, 5% NaHC03, water **and, if necessary, with** small **amounts of the organic solvent. After the purity of the peptide had been checked by t.1.c.. identification was made in usual manner e All elemental analyses were within acceptable limits.**

Table 1: α -Chymotrypsin-catalyzed peptide synthesis in aqueous-organic **solvent systems a)**

Donor ester	Organic solvent $\%(\vee/\vee)$	Enzyme mod)		Time	Yield	
			(\min)	(%)		
Ac-Leu-Phe-OMe	dichloromethane		75	0.05	20	79
Ac-Leu-Phe-OMe	1,2-dichloroethane		75.	0.05	20	82
Ac-Leu-Phe-OMe	trichloroethylene		75	0.05	20	84
Ac-Leu-Phe-OMe	carbon tetrachloride		75	0.05	20	81
Ac-Leu-Phe-OMe	ethyl acetate		75	0.05	20	72
Ac-Leu-Phe-OMe	nitromethane		75	0.05	20	79
Ac-Leu-Phe-OMe	dimethylformamide		30	0.20	20	40
Z-Ala-Phe-OMe	carbon tetrachloride		50	0.30	90	72
$Z - Ala - Phe - OMe$	trichloroethylene		50	0.20	15	83
Boc-Leu-Phe-OMe	petroleum ether/tri-					
	chloroethylene (2:1)		-60	0.60	120	86
Boc-Ala-Phe-OMe	\bullet	$\bullet\bullet$	60	0.60	120	76
$\texttt{Boc-(Gly)}_{2}$ -Phe-OMe		\bullet	60	0.60	60	60

a) The reaction mixture contained 0.2 mmol donor ester, 0.2 mmol Leu-NH₂ and 0.2 M Na₂CO₃/NaHCO₃ buffer (pH 10) in a total volume of 2 ml for Ac-Leu-**Phe-OMe and 1** ml **for Z-Ala-Phe-OMe. For the tert .-butyloxycerbonyl-peptide** esters a 10-fold excess of Leu-NH₂ in a total volume of 2.5 ml was used. Crystalline α **-chymotrypsin was purchased from SPOFA (Prague).**

In comparison with the good results obtained in the synthesis of Ac-Leu-Phe-Leu-NH₂ using water-immiscible organic solvents, the yield of the reaction in **the presence of dimethylformamide was rather low. Especially, tert .-butyloxycarbonyl-peptide methyl esters could be coupled with success using chymotrypsin as a catalyst in the biphasic aqueous-organic system. To the best of our knowledge, chymotrypsin-catalyzed syntheses with** such Boc-derivatives have not yet been reported in the literature.

Furthermore, we could establish that immobilized chymotrypsin catalyzes peptide bond formation with better results in a medium containing high concentrations of water-immiscible organic solvents than in the presence of methanol

894

or dimethylformamide as cosolvents (Table 2). This technique using insoluble catalysts to accelerate aqueous-organic phase reactions shows considerable potential for practical apolication.

Table 2: Peptide synthesis using immobilized α -chymotrypsin^b)

b) The reaction mixture contained 0.2 mmol donor ester, 0.2 mmol Leu-NH₂ and 0.2 M Na₂CO₃/NaHCO₃ buffer (pH 10) in a total volume indicated in the table. Chymotrypsin was immobilized on T-succinamidopropyl silica (macroporous: pore diameter 20 nm) via the N-hydroxysuccinimid ester method. The content of chymotrypsin was 20 mg/g silica. The reaction mixture was stirred at room temperature. After filtration the peptide was removed from the silicasupported enzyme by *a* short treatment with methanol.

In contrast to our results Vann and Weetall 9 were not successful in peptide synthesis using protected amino acid substrates and immobilized enzyme in 78 % (v/v) ethanol.

One of the main advantages of our approach is the possibility to re-utilize the enzyme for further coupling reactions after simple phase separation. In the synthesis of the model peptide Ac-Leu-Phe-Leu-NH₂ we were able to show that with both the buffer phase of free chymotrypsin as well as the immobilized enzyme using the biphasic solvent system 0.2 M Na₂CO₃/NaHCO₃ buffer - 75 % (v/v] dichloromethane the yield decreased only by about 5 % after two re-utilization experiments.

Generally, the use of biphasic aqueous-organic solvent systems should be applicable to other protease-catalyzed coupling reactions. Table 3 indicates first results using **papain as a catalyst in the syntheses of some model** peptides. In the biphasic system 0.2 M McIlvaine buffer (pH 5.5) - carbon

tetrachloride and ethyl acetate, respectively, the yields obtained are significantly higher than those in methanol.

Table 3: Papain-catalyzed peptide synthesis in aqueous-organic systems c)

c) The reaction mixture (2 ml) contained 0.2 mmol of the C-component, 0.2 mmol Leu-NH2, 50 mg papain (50 nkat/mg), 0.1 ml mercaptoethanol and 0.2 M McIlvaine buffsr (PH 5.5). The reaction mixture was stirred at 30°C for 20 h. Purification and identification was made as described above.

Studies on optimization of the preliminary results, the extension to other Proteases and scaling-up **experiments are in progress.**

REFERENCES

- **M. Bergmann and H. Fraenkel-Conrat, 3. Biol. Chem. 119, 707 (1937)**
- **Y. Isowa, Yuki Gosei Kagaku Kyokaishi 36, 195 (1978)**
- **Y, Isowa et** al., **Bull. Chem, Sot, Japan 50, 2762, 2766 (1977),** 51, 271 (1978)
- **P. L, Luisi et al., Biopolymers 16, 631 (1977),** 17, **2573 (1978)** ; **J. Mol. Catalysis 2, 133 (1977)**
- **I<. Morihara et al., Biochem. J.** 163, **531 (1977); 3. Biochem. 82, 1055 (19771,** 84, **1277 (1978)**
- **G. A. Homandberg, J. A. Mattis and M.** Laskowski, **Jr., Biochemistry 17, 5220 (1978)**
- **A. M. Klibanov, G. P. Samokhin, K. Martinek and I. V. Berezin,** Biotechnol. Bioeng, 19, 1351 (1977)
- **P 0 Cremonesi , G. Mazzola and L. Cremonesi, Ann. Chim, 67, 415 (1977)**
- **W. P, Vann and H. H. Weetall, J. Solid Phase Riochem. I, 297 (1976)**

(Received in Germany **26** November 1979)